互聯(lián)網(wǎng)+移動(dòng)互聯(lián)網(wǎng),招商、營(yíng)銷(xiāo)、推廣、無(wú)處不在!
便捷二維碼、一鍵撥號(hào)、一鍵分享、快速互動(dòng),緊抓商機(jī)…
打通微信平臺(tái),緊密鏈接,全方位開(kāi)拓市場(chǎng),提高產(chǎn)品知名度…
主動(dòng)出擊展示產(chǎn)品,讓采購(gòu)軍團(tuán)深度了解,提高品牌核心影響力!
手機(jī)掃描 智能上傳 發(fā)布 查看 采購(gòu)?? 全天候 全方位給力企業(yè)產(chǎn)品展示 招商 營(yíng)銷(xiāo) 推廣
|
近年來(lái),在鋰二次電池新材料的研發(fā)過(guò)程中逐漸建立了基于材料基因組思想的高通量計(jì)算理論工具與研究平臺(tái)。在該平臺(tái)上,通過(guò)將不同精度的計(jì)算方法組合,實(shí)現(xiàn)了基于離子輸運(yùn)性質(zhì)的材料篩選;通過(guò)將信息學(xué)中數(shù)據(jù)挖掘算法引入高通量計(jì)算數(shù)據(jù)的分析,證實(shí)了材料大數(shù)據(jù)解讀的可行性。
上述平臺(tái)實(shí)現(xiàn)了在鋰電池固體電解質(zhì)的高通量篩選、優(yōu)化和設(shè)計(jì)上進(jìn)行新材料研發(fā)的示范應(yīng)用,通過(guò)高通量計(jì)算篩選獲得了兩種可用于富鋰正極包覆材料的化合物L(fēng)i2SiO3和Li2SnO3,有效改善了富鋰正極的循環(huán)穩(wěn)定性;通過(guò)對(duì)摻雜策略的高通量篩選,獲得了提高固體電解質(zhì)β-Li3PS4離子電導(dǎo)率和穩(wěn)定性的方案;通過(guò)高通量結(jié)構(gòu)預(yù)測(cè)設(shè)計(jì)了全新的氧硫化物固體電解質(zhì)LiAlSO;并在零應(yīng)變電極材料結(jié)構(gòu)與性能的構(gòu)效關(guān)系研究中進(jìn)行了大數(shù)據(jù)分析的嘗試,分析了零應(yīng)變電極材料的設(shè)計(jì)依據(jù)。上述材料基因組方法在鋰電池材料研發(fā)中的應(yīng)用為在其他類(lèi)型材料研發(fā)中推廣這種新的研發(fā)模式提供了可能。
傳統(tǒng)的電池材料研發(fā)是基于以“試錯(cuò)法”為特征的開(kāi)發(fā)模式,從發(fā)現(xiàn)到應(yīng)用的周期很長(zhǎng),一般需要20年或更長(zhǎng)時(shí)間。“材料基因組計(jì)劃”的提出,為鋰電池新材料的開(kāi)發(fā)提供新的思路。“材料基因組”科學(xué)研究的關(guān)鍵是實(shí)現(xiàn)材料研發(fā)的“高通量”,即并發(fā)式完成“一批”而非“一個(gè)”材料樣品的。
計(jì)算模擬、制備和表征,即高通量計(jì)算、高通量制備與高通量表征,實(shí)現(xiàn)系統(tǒng)的篩選和優(yōu)化材料,從而加快材料從發(fā)現(xiàn)到應(yīng)用的過(guò)程。利用“材料基因工程”方法,通過(guò)高通量、多尺度的大范圍計(jì)算和搜索,借助數(shù)據(jù)挖掘技術(shù)和方法,有望篩選出可能具有優(yōu)異性能的新材料。設(shè)計(jì)了將不同精度計(jì)算方法相結(jié)合的高通量篩選流程:
首先依據(jù)材料的使用條件通過(guò)元素篩選縮小范圍,然后采用快速的鍵價(jià)計(jì)算進(jìn)行初步篩選去除離子輸運(yùn)勢(shì)壘較大的化合物,最后采用基于密度泛函的模擬對(duì)上一步篩選得到的材料進(jìn)一步精確計(jì)算獲得最終的備選材料,從而有效地提高了整體的篩選效率,實(shí)現(xiàn)了鋰二次電池材料中快離子導(dǎo)體的高效篩選。
圖1 通過(guò)一系列命令腳本實(shí)現(xiàn)運(yùn)算過(guò)程的自動(dòng)化
1.富鋰正極新型包覆材料的篩選
通過(guò)采用高通量計(jì)算篩選,綜合考慮結(jié)構(gòu)匹配、擴(kuò)散通道、導(dǎo)電性等因素,發(fā)現(xiàn)了兩種可能與鋰離子電池富鋰正極材料相匹配的包覆化合物L(fēng)i2SiO3和Li2SnO3。這兩種材料都屬于離子化合物,具有較好的離子導(dǎo)電性,并且在化學(xué)結(jié)構(gòu)上與富鋰材料((1..x)Li2MnO3xLiMO2)中的母相材料Li2MnO3相似,因此可嘗試選擇其作為富鋰材料的表面修飾層。
圖2 用鍵價(jià)方法計(jì)算得到的(a)Li2SiO3和(b)Li2SnO3的離子輸運(yùn)通道
2.高通量計(jì)算篩選固體電解質(zhì)-Li3PS4的優(yōu)化改性方案
通過(guò)采用密度泛函計(jì)算與鍵價(jià)計(jì)算相結(jié)合的方法,可以對(duì)大量的摻雜改性方案進(jìn)行高通量的計(jì)算篩選.采用可準(zhǔn)確確定晶體結(jié)構(gòu)的密度泛函計(jì)算來(lái)獲得摻雜后的原子位置信息,再通過(guò)鍵價(jià)計(jì)算快速選擇其中有利于降低鋰離子遷移勢(shì)壘的摻雜方案.通過(guò)對(duì)β-Li3PS4的P位進(jìn)行Sb,Zn,Al,Ga,Si,Ge,Sn的摻雜,以及對(duì)S位進(jìn)行O摻雜的研究發(fā)現(xiàn),用氧替換晶格中部分硫或用鋅氧兩種元素對(duì)β-Li3PS4進(jìn)行共摻雜能有效提高其離子電導(dǎo)率。
在通過(guò)高通量計(jì)算篩選獲得了材料改性的優(yōu)化方案后,基于密度泛函的高精度計(jì)算可有效揭示摻雜對(duì)材料性能的改善機(jī)理。
圖3 (a)采用密度泛函計(jì)算與鍵價(jià)計(jì)算結(jié)合的高通量計(jì)算流程,篩選能改善β-Li3PS4離子電導(dǎo)率和穩(wěn)定性的摻雜改性方案;(b)P位摻雜Sb,Zn,Al,Ga,Si,Ge,Sn以及S位摻雜O后計(jì)算得到的鋰離子遷移勢(shì)壘。
3.高通量結(jié)構(gòu)預(yù)測(cè)方法發(fā)現(xiàn)全新結(jié)構(gòu)的固體電解質(zhì)LiAlSO
通過(guò)采用CALYPSO軟件在Li-Al-S-O的元素空間中構(gòu)建具有各種空間群的晶體結(jié)構(gòu),并對(duì)其進(jìn)行結(jié)構(gòu)優(yōu)化和能量計(jì)算,基于其中能量低的結(jié)構(gòu)運(yùn)用粒子群優(yōu)化算法生成新的結(jié)構(gòu),在此優(yōu)化過(guò)程中,逐漸找到由這四種元素按照1:1:1:1的比例形成的最穩(wěn)定結(jié)構(gòu).計(jì)算結(jié)果顯示,這種全新的氧硫化物L(fēng)iAlSO具有與-NaFeO2相似的正交結(jié)構(gòu),AlS2O2層沿b軸方向平行排列,Li離子位于層間與S和O形成扭曲的四面體單元。
圖4 (a)采用高通量晶體結(jié)構(gòu)預(yù)測(cè)算法得到的含鋰氧硫化物L(fēng)iAlSO的晶體結(jié)構(gòu);(b)密度泛函計(jì)算得到的鋰離子在該結(jié)構(gòu)中的輸運(yùn)勢(shì)壘
4.數(shù)據(jù)挖掘方法研究零應(yīng)變電極材料中結(jié)構(gòu)與體積變化的關(guān)聯(lián)
基于材料基因思想的高通量計(jì)算與高通量實(shí)驗(yàn)測(cè)試為新材料研發(fā)領(lǐng)域不僅提供了新的研究思路,而且?guī)?lái)了成倍增長(zhǎng)的數(shù)據(jù)信息,為大數(shù)據(jù)方法在材料學(xué)中的應(yīng)用打下了基礎(chǔ)。機(jī)器學(xué)習(xí)技術(shù)已被用于獲取材料性質(zhì)與各種復(fù)雜的物理因子之間的統(tǒng)計(jì)模型,例如通過(guò)預(yù)測(cè)分子的原子化能尋找熱力學(xué)穩(wěn)定的新化合物。
圖5顯示了采用數(shù)據(jù)挖掘方法研究目標(biāo)變量與描述因子之間關(guān)聯(lián)的三個(gè)主要步驟:首先需要獲得不同樣本中目標(biāo)變量的數(shù)據(jù),這里針對(duì)尖晶石結(jié)構(gòu)的正極材料LiX2O4和層狀結(jié)構(gòu)的正極材料LiXO2(X為可變價(jià)元素)共28種結(jié)構(gòu),通過(guò)密度泛函計(jì)算對(duì)材料在脫鋰前和完全脫鋰后的結(jié)構(gòu)進(jìn)行優(yōu)化,獲得由于脫鋰導(dǎo)致的體積變化百分比。
接下來(lái)需要對(duì)每個(gè)樣本建立一系列描述因子,用于表述其原子層面的微觀信息,在本研究中,為每種結(jié)構(gòu)選取了34個(gè)描述因子,包括與晶格參數(shù)相關(guān)的7個(gè)參數(shù)、與組成元素基本性質(zhì)相關(guān)的10個(gè)參數(shù)、與局部晶格形變相關(guān)的12個(gè)參數(shù)、與電荷分布相關(guān)的3個(gè)參數(shù)和與組分相關(guān)的2個(gè)參數(shù)。
在具備了描述因子與目標(biāo)變量的數(shù)據(jù)后,就可開(kāi)始采用數(shù)據(jù)挖掘的方法來(lái)建立因子與變量之間的關(guān)聯(lián),對(duì)于所建立的模型,需要采用統(tǒng)計(jì)參數(shù)來(lái)評(píng)估其可靠性及預(yù)測(cè)能力,并在合理的預(yù)測(cè)范圍內(nèi)對(duì)新的結(jié)構(gòu)進(jìn)行目標(biāo)物性的預(yù)測(cè)。
圖5 采用多元線性回歸數(shù)據(jù)挖掘方法分析脫鋰前后晶格體積變化與結(jié)構(gòu)之間的關(guān)聯(lián)
通過(guò)采用“Leave-One-Out”方法進(jìn)行評(píng)估,發(fā)現(xiàn)在上述問(wèn)題中采用11個(gè)相關(guān)變量(11components)時(shí)得到的Q2指數(shù)最大,表明此時(shí)得到的模型最為穩(wěn)定。進(jìn)一步的因子重要性分析表明(圖6),盡管離子半徑是晶格體積變化的重要決定因素,但體積變化并不僅僅與離子半徑有關(guān),過(guò)渡金屬的成鍵參數(shù)及過(guò)渡金屬氧八面體的局域結(jié)構(gòu)也對(duì)體積變化起到作用。在此模型的基礎(chǔ)上,可以構(gòu)建含有多種過(guò)渡金屬的正極材料,共同調(diào)節(jié)體系在脫嵌鋰過(guò)程中的體積變化,最大程度地減小由于鋰含量變化導(dǎo)致的晶格體積變化率。
圖6 采用PLS模型因子重要性分析探尋對(duì)正極材料脫鋰過(guò)程體積變化影響較大的參數(shù)。
針對(duì)固態(tài)鋰二次電池的研發(fā),我們及時(shí)開(kāi)展了適用于鋰電池材料的高通量計(jì)算方法的探索,發(fā)展了包含離子輸運(yùn)性質(zhì)在內(nèi)的、融合不同精度的計(jì)算方法,建立了基于鋰離子輸運(yùn)勢(shì)壘的高通量計(jì)算篩選和優(yōu)化流程,實(shí)現(xiàn)了多種材料的并發(fā)計(jì)算、監(jiān)控計(jì)算中間過(guò)程、分析計(jì)算結(jié)果、基于計(jì)算結(jié)果對(duì)材料性能的判斷和考核等功能。運(yùn)用該自主研發(fā)的高通量計(jì)算平臺(tái),已成功篩選了無(wú)機(jī)晶體結(jié)構(gòu)數(shù)據(jù)庫(kù)中含鋰的氧化物,發(fā)現(xiàn)了兩種能改善富鋰正極循環(huán)性能的包覆材料;并對(duì)硫化物固體電解質(zhì)進(jìn)行了摻雜方案的高通量計(jì)算優(yōu)化,由此提出了構(gòu)建多種陰離子共存的固體電解質(zhì)的設(shè)計(jì)思想,發(fā)明了一種全新的氧硫化物固體電解質(zhì);根據(jù)高通量計(jì)算所匯集的數(shù)據(jù),嘗試了在正極材料脫鋰過(guò)程中的體積變化研究中采用多元線性回歸的數(shù)據(jù)分析方法,為進(jìn)一步在鋰二次電池研發(fā)中引入數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)等工智能方法提供了可能。
來(lái)源 動(dòng)力電池?zé)崾Э丶夹g(shù)研究
【免責(zé)聲明】上述資訊在于傳遞更多信息,不代表本網(wǎng)對(duì)其觀點(diǎn)贊同和內(nèi)容的真實(shí)性負(fù)責(zé),僅供讀者參考。凡注明馳譽(yù)車(chē)輛招商網(wǎng)的作品,為本網(wǎng)版權(quán)或有使用權(quán),歡迎轉(zhuǎn)載,需注明出處。凡署名作者的版權(quán)歸原作者或出版者所有。本網(wǎng)部分信息由會(huì)員發(fā)布或來(lái)自互聯(lián)網(wǎng),如不慎觸及您的權(quán)益,請(qǐng)聯(lián)系我們盡快刪除。
互聯(lián)網(wǎng)+移動(dòng)互聯(lián)網(wǎng),招商、營(yíng)銷(xiāo)、推廣、無(wú)處不在!
便捷二維碼、一鍵撥號(hào)、一鍵分享、快速互動(dòng),緊抓商機(jī)…
打通微信平臺(tái),緊密鏈接,全方位開(kāi)拓市場(chǎng),提高產(chǎn)品知名度…
主動(dòng)出擊展示產(chǎn)品,讓采購(gòu)軍團(tuán)深度了解,提高品牌核心影響力!